Intro to Probability

is the probability that it comes Example: Flipping a coin. What up heads? [50%]

Terminology:

- Experiment: Flipping a coin Outcomes: Heads, Tails
- Trial: One flip of coin

Empirical Probability: Estimating probability by actually performing trials

Relative Frequency = # occurences of outcome # trials

Example: Toss a coin 5000 times, get 2482 heads

Rel Frey of Heads = $\frac{2482}{5000}$ = 0.4964 We expect as # of trials increases, the rel frey will get closer to 0.5.

Law of Large Numbers: As more triols of an experiment are repeated, the relative free guts closer to the actual probability

Exemple: 1000 students at high school

Class	# students	Rel Frey
Freshmen	210	210/1000 = 0.21
Soph	270	0.27
Jun	300	0.30
Sen	220	0.22

$$P(freshman) = 0.21$$
 $P(soph) = 0.27$
 $P(freshman or soph) = \frac{210 + 270}{1000} = \frac{480}{1000} = 0.48$

Sample Space: Set of all possible outcomes ([fresh, soph, jun, sen])

Simple Outcome: One element of sample space (freshman)

Examples:

i) Flipping a coin. Semple spece: { Heads, Tails}

ii) Drawing a card from deck. Sample space: {cards}
iii) Toss a coin twice. Sample space: { HH, HT, TH, TT}

Properties of sample space:

- a) Contain an element for every outcome (& fresh, soph, jun? would not be a good sample space)
 - b) Each outcome should correspond to exactly one element of our sample space
 - (& blue eyes, brown eyes, brown hair, blonde heir, ... } would not be a good sample for human attributes) space