Cost	Probability	Frezwency (per 100)
\$0.85	0.8	80
Z 1	0.16	16
\$0	0.04	4
Mean cost = $\frac{80(0.85) + 16(1.00) + 4(0.00)}{100} = 0.84$		
$= \frac{80}{100}(0.85) + \frac{11}{100}(1.00) + \frac{14}{100}(0.00)$ Expected Value = $0.8(0.85) + 0.16(1.00) + 0.04(0.00)$		

Definition: If a random variable X has valuer
$$X_{1}, X_{2},..., X_{n}$$

with corresponding probabilities $p_{1}, p_{2},..., p_{n}$, then the
expected value of X is
 $E(X) = p_{1}X_{1} + p_{2}X_{2} + \cdots + p_{n}X_{n}$

Example: Coin flip game
$$\chi = \text{amount}$$
 won
a) Heads \longrightarrow Win \$5 $E(\chi) = \frac{1}{2}(5) + \frac{1}{2}(1) = 3$
Tails \longrightarrow Win \$4
 $E(\chi) = \frac{1}{2}(4) + \frac{1}{2}(-3) = 0.5$
Tails \longrightarrow Lox \$3 $E(\chi) = \frac{1}{2}(4) + \frac{1}{2}(-3) = 0.5$

c) Heads mo win \$5 Tails ma Lose \$5 $E(X) = \frac{1}{2}(5) + \frac{1}{2}(-5) = 0 t$ Game is perfectly foir (forms neither person)

Example: Roulette. 38 numbers Put \$1 (an number 4. Lands on 4 my Win \$35 Anything else - Lose \$1 $E(X) = \frac{1}{38}(35) + \frac{37}{38}(-1) = \frac{-2}{38} \approx -0.05$ R Not in our four Example: Lottery. 10000 tickets, 1 mins 9999 love Winner gots \$1 million, boars get nothing How much should they charge to make this fair? C = cost of ticket. E(X) = 0.0001(10000000 - C) + 0.9999(0 - C)= 100 - 0.0001c - 0.9999c= 100 - C = 0 If game is fair ~> C=100

Veriance Stendard Der of Rundom Variables Cost Probability Frequency (per 100) Mean = 0, 84 \$0.85 80 0.8 12/ 0.16 16 *2*0 0.04 4 $Variance = \frac{80(0.85 - 0.84)^2 + 16(1 - 0.84)^2 + 4(0 - 0.84)^2}{16(1 - 0.84)^2 + 4(0 - 0.84)^2}$ 100 $= 0.8(0.85-0.84)^{2}+0.16(1-0.84)+0.04(0-0.84)^{2}$

Definition: If X is a rendom variable with values
X1, X2,..., Xn, corresponding probes P1, P2,..., Pn, and expected
Value
$$E(X) = \mu_{g}$$
 then
Variance = $\sigma^{2}(X) = p_{1}(X_{1}-\mu)^{2} + p_{2}(X_{2}-\mu)^{2} + ... + p_{n}(X_{n}-\mu)^{2}$
Standard Dov = $\sigma(X) = \sqrt{Variance}$