Goal for today: Find probabilities of unions, intersections,
and complements.
Example: 200 students. 4D take English, SD take meth,
10 take both.
$$E = English$$
 $M = Math$
 \overrightarrow{SOPP} $P(E) = \underbrace{40}_{200} = 0.2$ $P(M) = \underbrace{50}_{200} = 0.25$
 $P(not E) = P(E') = \underbrace{200 - 40}_{200} = 0.8$
 $= \frac{200}{200} - \frac{40}{20} = 1 - P(E)$

 $P(E \circ M) = P(E \cup M) = \frac{n(E \cup M)}{n(S)}$ = n(E) + n(M) - n(EnM)200 = 40 + 50 - 10200 $= \frac{40}{200} + \frac{50}{200} - \frac{10}{200}$ $= P(E) + P(M) - P(E \cap M)$ Theorem: $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ for any events E+F

If E and F mutually exclusive events than

$$P(E - F) = P(E) + P(F)$$

Examples: \cdot Flipping a coin $E = Heads$ $F = t = ils$
 $P(E - F) = P(E) + P(F)$
 $= \frac{1}{2} + \frac{1}{2} = 1$
 \cdot Rolling pair of dice $E = sum$ is 7 $F = sum$ is 9
 $P(E - F) = P(E) + P(F) = \frac{10}{36} + \frac{4}{36} = \frac{10}{36}$

• Rolling two dice
$$E = \text{sum is } 7$$
 $F = \text{at kast one} die shows a 3
 $P(E \cup F) = P(E) + P(F) - P(E \cap F)$
 $= \frac{6}{36} + \frac{11}{36} - \frac{7}{36} = \frac{15}{36} = \frac{5}{12}$
Example : Two people sclected from a group of 7 men
and 5 momen
a) $P(\text{both men or both women}) = P(\text{both men}) + P(\text{both women})$
 $= \frac{C(7,2)}{C(12,2)} + \frac{C(5,2)}{C(12,2)}$
b) $P(\text{at least one is a men}) = (-P(\text{none are men}) = |-P(\text{both men}) + P(\text{both men})$$

Question: How many prople need to be in group to guarantee that 2 people share a birthdate? 366 people

Question: How many to have a SDS chance that 2
people share a birthday?
Start with a group of 5 people
$$P(22)$$
 people share a birthday) = $1 - P(everyone has differentbday)$
 $= 1 - \frac{P(365,5)}{365^5} = 0.027$

For n people, probability that a boday is shared
is
$$1 - \frac{P(365.n)}{365^n}$$